3.2.27 \(\int \frac {(g \tan (e+f x))^p}{(a+a \sin (e+f x))^2} \, dx\) [127]

Optimal. Leaf size=138 \[ \frac {(g \tan (e+f x))^{1+p}}{a^2 f g (1+p)}-\frac {2 \cos ^2(e+f x)^{\frac {5+p}{2}} \, _2F_1\left (\frac {2+p}{2},\frac {5+p}{2};\frac {4+p}{2};\sin ^2(e+f x)\right ) \sec ^3(e+f x) (g \tan (e+f x))^{2+p}}{a^2 f g^2 (2+p)}+\frac {2 (g \tan (e+f x))^{3+p}}{a^2 f g^3 (3+p)} \]

[Out]

(g*tan(f*x+e))^(1+p)/a^2/f/g/(1+p)-2*(cos(f*x+e)^2)^(5/2+1/2*p)*hypergeom([1+1/2*p, 5/2+1/2*p],[2+1/2*p],sin(f
*x+e)^2)*sec(f*x+e)^3*(g*tan(f*x+e))^(2+p)/a^2/f/g^2/(2+p)+2*(g*tan(f*x+e))^(3+p)/a^2/f/g^3/(3+p)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2790, 2687, 14, 16, 2697, 32} \begin {gather*} \frac {2 (g \tan (e+f x))^{p+3}}{a^2 f g^3 (p+3)}-\frac {2 \sec ^3(e+f x) \cos ^2(e+f x)^{\frac {p+5}{2}} (g \tan (e+f x))^{p+2} \, _2F_1\left (\frac {p+2}{2},\frac {p+5}{2};\frac {p+4}{2};\sin ^2(e+f x)\right )}{a^2 f g^2 (p+2)}+\frac {(g \tan (e+f x))^{p+1}}{a^2 f g (p+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(g*Tan[e + f*x])^p/(a + a*Sin[e + f*x])^2,x]

[Out]

(g*Tan[e + f*x])^(1 + p)/(a^2*f*g*(1 + p)) - (2*(Cos[e + f*x]^2)^((5 + p)/2)*Hypergeometric2F1[(2 + p)/2, (5 +
 p)/2, (4 + p)/2, Sin[e + f*x]^2]*Sec[e + f*x]^3*(g*Tan[e + f*x])^(2 + p))/(a^2*f*g^2*(2 + p)) + (2*(g*Tan[e +
 f*x])^(3 + p))/(a^2*f*g^3*(3 + p))

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2697

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Sec[e + f
*x])^m*(b*Tan[e + f*x])^(n + 1)*((Cos[e + f*x]^2)^((m + n + 1)/2)/(b*f*(n + 1)))*Hypergeometric2F1[(n + 1)/2,
(m + n + 1)/2, (n + 3)/2, Sin[e + f*x]^2], x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !IntegerQ[(n - 1)/2] &&  !In
tegerQ[m/2]

Rule 2790

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[a^(2*
m), Int[ExpandIntegrand[(g*Tan[e + f*x])^p/Sec[e + f*x]^m, (a*Sec[e + f*x] - b*Tan[e + f*x])^(-m), x], x], x]
/; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {(g \tan (e+f x))^p}{(a+a \sin (e+f x))^2} \, dx &=\frac {\int \left (a^2 \sec ^4(e+f x) (g \tan (e+f x))^p-2 a^2 \sec ^3(e+f x) \tan (e+f x) (g \tan (e+f x))^p+a^2 \sec ^2(e+f x) \tan ^2(e+f x) (g \tan (e+f x))^p\right ) \, dx}{a^4}\\ &=\frac {\int \sec ^4(e+f x) (g \tan (e+f x))^p \, dx}{a^2}+\frac {\int \sec ^2(e+f x) \tan ^2(e+f x) (g \tan (e+f x))^p \, dx}{a^2}-\frac {2 \int \sec ^3(e+f x) \tan (e+f x) (g \tan (e+f x))^p \, dx}{a^2}\\ &=\frac {\text {Subst}\left (\int (g x)^p \left (1+x^2\right ) \, dx,x,\tan (e+f x)\right )}{a^2 f}+\frac {\int \sec ^2(e+f x) (g \tan (e+f x))^{2+p} \, dx}{a^2 g^2}-\frac {2 \int \sec ^3(e+f x) (g \tan (e+f x))^{1+p} \, dx}{a^2 g}\\ &=-\frac {2 \cos ^2(e+f x)^{\frac {5+p}{2}} \, _2F_1\left (\frac {2+p}{2},\frac {5+p}{2};\frac {4+p}{2};\sin ^2(e+f x)\right ) \sec ^3(e+f x) (g \tan (e+f x))^{2+p}}{a^2 f g^2 (2+p)}+\frac {\text {Subst}\left (\int \left ((g x)^p+\frac {(g x)^{2+p}}{g^2}\right ) \, dx,x,\tan (e+f x)\right )}{a^2 f}+\frac {\text {Subst}\left (\int (g x)^{2+p} \, dx,x,\tan (e+f x)\right )}{a^2 f g^2}\\ &=\frac {(g \tan (e+f x))^{1+p}}{a^2 f g (1+p)}-\frac {2 \cos ^2(e+f x)^{\frac {5+p}{2}} \, _2F_1\left (\frac {2+p}{2},\frac {5+p}{2};\frac {4+p}{2};\sin ^2(e+f x)\right ) \sec ^3(e+f x) (g \tan (e+f x))^{2+p}}{a^2 f g^2 (2+p)}+\frac {2 (g \tan (e+f x))^{3+p}}{a^2 f g^3 (3+p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.
time = 3.04, size = 710, normalized size = 5.14 \begin {gather*} \frac {(2+p) \left (F_1\left (1+p;p,2+p;2+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right )-2 F_1\left (1+p;p,3+p;2+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right )+2 F_1\left (1+p;p,4+p;2+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin (e+f x) (g \tan (e+f x))^p}{a^2 f (1+p) (1+\sin (e+f x))^2 \left ((2+p) F_1\left (1+p;p,2+p;2+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right )-2 (2+p) F_1\left (1+p;p,3+p;2+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right )+4 F_1\left (1+p;p,4+p;2+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right )+2 p F_1\left (1+p;p,4+p;2+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right )-2 F_1\left (2+p;p,3+p;3+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )-p F_1\left (2+p;p,3+p;3+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )+6 F_1\left (2+p;p,4+p;3+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )+2 p F_1\left (2+p;p,4+p;3+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )-8 F_1\left (2+p;p,5+p;3+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )-2 p F_1\left (2+p;p,5+p;3+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )+p F_1\left (2+p;1+p,2+p;3+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )-2 p F_1\left (2+p;1+p,3+p;3+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )+2 p F_1\left (2+p;1+p,4+p;3+p;\tan \left (\frac {1}{2} (e+f x)\right ),-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \tan \left (\frac {1}{2} (e+f x)\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(g*Tan[e + f*x])^p/(a + a*Sin[e + f*x])^2,x]

[Out]

((2 + p)*(AppellF1[1 + p, p, 2 + p, 2 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]] - 2*AppellF1[1 + p, p, 3 + p,
2 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]] + 2*AppellF1[1 + p, p, 4 + p, 2 + p, Tan[(e + f*x)/2], -Tan[(e + f
*x)/2]])*Sin[e + f*x]*(g*Tan[e + f*x])^p)/(a^2*f*(1 + p)*(1 + Sin[e + f*x])^2*((2 + p)*AppellF1[1 + p, p, 2 +
p, 2 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]] - 2*(2 + p)*AppellF1[1 + p, p, 3 + p, 2 + p, Tan[(e + f*x)/2],
-Tan[(e + f*x)/2]] + 4*AppellF1[1 + p, p, 4 + p, 2 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]] + 2*p*AppellF1[1
+ p, p, 4 + p, 2 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]] - 2*AppellF1[2 + p, p, 3 + p, 3 + p, Tan[(e + f*x)/
2], -Tan[(e + f*x)/2]]*Tan[(e + f*x)/2] - p*AppellF1[2 + p, p, 3 + p, 3 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/
2]]*Tan[(e + f*x)/2] + 6*AppellF1[2 + p, p, 4 + p, 3 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]]*Tan[(e + f*x)/2
] + 2*p*AppellF1[2 + p, p, 4 + p, 3 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]]*Tan[(e + f*x)/2] - 8*AppellF1[2
+ p, p, 5 + p, 3 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]]*Tan[(e + f*x)/2] - 2*p*AppellF1[2 + p, p, 5 + p, 3
+ p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]]*Tan[(e + f*x)/2] + p*AppellF1[2 + p, 1 + p, 2 + p, 3 + p, Tan[(e + f
*x)/2], -Tan[(e + f*x)/2]]*Tan[(e + f*x)/2] - 2*p*AppellF1[2 + p, 1 + p, 3 + p, 3 + p, Tan[(e + f*x)/2], -Tan[
(e + f*x)/2]]*Tan[(e + f*x)/2] + 2*p*AppellF1[2 + p, 1 + p, 4 + p, 3 + p, Tan[(e + f*x)/2], -Tan[(e + f*x)/2]]
*Tan[(e + f*x)/2]))

________________________________________________________________________________________

Maple [F]
time = 1.35, size = 0, normalized size = 0.00 \[\int \frac {\left (g \tan \left (f x +e \right )\right )^{p}}{\left (a +a \sin \left (f x +e \right )\right )^{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*tan(f*x+e))^p/(a+a*sin(f*x+e))^2,x)

[Out]

int((g*tan(f*x+e))^p/(a+a*sin(f*x+e))^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*tan(f*x+e))^p/(a+a*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((g*tan(f*x + e))^p/(a*sin(f*x + e) + a)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*tan(f*x+e))^p/(a+a*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

integral(-(g*tan(f*x + e))^p/(a^2*cos(f*x + e)^2 - 2*a^2*sin(f*x + e) - 2*a^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\left (g \tan {\left (e + f x \right )}\right )^{p}}{\sin ^{2}{\left (e + f x \right )} + 2 \sin {\left (e + f x \right )} + 1}\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*tan(f*x+e))**p/(a+a*sin(f*x+e))**2,x)

[Out]

Integral((g*tan(e + f*x))**p/(sin(e + f*x)**2 + 2*sin(e + f*x) + 1), x)/a**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*tan(f*x+e))^p/(a+a*sin(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((g*tan(f*x + e))^p/(a*sin(f*x + e) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (g\,\mathrm {tan}\left (e+f\,x\right )\right )}^p}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*tan(e + f*x))^p/(a + a*sin(e + f*x))^2,x)

[Out]

int((g*tan(e + f*x))^p/(a + a*sin(e + f*x))^2, x)

________________________________________________________________________________________